An Approach to Homogenization of Air Temperature Series in the Czech Republic during Period of Instrumental Measurements

Petr Štěpánek

Department of Geography, Masaryk University, Brno, CZ Czech Hydrometeorological Institute, local office Brno, CZ

Homogenization

- monthly averages of air temperature measurements
- almost 200 stations measuring in some period during instrumental measurements (1771-2000)
- change in level (mean)

Climatological studies

Measuring and collecting data

Climatological studies

Measuring data

Data quality control and

Homogenization

Climatological studies

- Measuring data
- Homogenization
- Data Analysis

- Quality control
- Homogenization
- Data Analysis

Metadata

Metadata

Outliers

Metadata

Outliers

Missing Data

Filling of missing values

- After homogenization: more precise data are not influenced by possible shifts in the series
- Before homogenization: influence on inhomogeneity detection

Homogenization

- Quality control
- Homogenization
- Data Analysis

Homogenization

- Change of measuring conditions
 - inhomogeneities

Inhomogeneity Detection

Absolute Homogeneity Testing

Inhomogeneity Detection

- Absolute Homogeneity Testing
- Relative Homogeneity Testing

Creating reference Series

- Creating reference Series
- Tests of homogeneity

- Creating reference Series
- Tests of homogeneity
- Assessing homogeneity
 - Metadata

physically justified ("undoubted" inhomogeneity)

- Creating reference Series
- Tests of homogeneity
- Assessing homogeneity
 - Metadata

- physically justified ? ("undoubted" inhomogeneity)

Adjusting Series

Inhomogeneity Detecting by SNHT (p=0.05, 950 series)

- generated series of random numbers (properties of air temperature series for year, summer and winter, CZ)
- introduced steps with various amount of change in level
- various position of the steps
- various lengths of the series

Inhomogeneity Detecting by SNHT (p=0.05, 950 series)

Assessing Homogeneity - Problems

most of metadata incomplete

we depend upon statistical tests results

Assessing Homogeneity - Problems

- most of metadata incomplete
 - we depend upon statistical tests results
- uncertainty in test results
 - right inhomogeneity detection is problematic

Proposed solution

- To get as many test results for each candidate series as possible
- Statistical processing of big amount of test results for each individual series

For each year, group of years and whole series: portion of number of detected inhomogenities in number of all possible (theoretical) detections

Adventages of statistical processing

- we know relevance (probability) of each inhomogeneity
- we can assess quality of measurements for series as a whole

How to increase number of test results

- Quality control
- Homogenization
- Data Analysis

Average of all series available

Average of all series available

Average from mostly correlated series

Average of all series available

Average from mostly correlated series

Average from the **nearest** stations

Average of all series available

Average from mostly correlated series

Average from the nearest stations

- + possible inhomogeneities + created reference series are suppressed the most
- the least correlated with tested series

- most similar to tested one
- similar inhomogeneities with tested series
- + geographical vicinity preserved
- different climatic conditions

Reference Series - differences

Homogeneity Tests

Alexandersson SNHT

Alexandersson Standart Normal Homogeneity Test (Single shift test)

Reference series:

$$q_{i} = Y_{i} / \{ \left[\sum_{j=1}^{k} \rho_{j}^{2} X_{ji} \overline{Y} / \overline{X}_{j} \right] / \sum_{j=1}^{k} \rho_{j}^{2} \}$$

$$q_{i} = Y_{i} - \{ \sum_{j=1}^{k} \rho_{j}^{2} \left[X_{ji} - \overline{X}_{j} + \overline{Y} \right] / \sum_{j=1}^{k} \rho_{j}^{2} \}$$

Null and alternative hypothesis:

H₀:
$$z_i \in N(0,1)$$
, $i \in \{1,...,n\}$.
H₁: $z_i \in N(\mu_1,1)$, $i \in \{1,...,a\}$,
 $z_i \in N(\mu_2,1)$, $i \in \{a+1,...,n\}$,
for 1 ? $a < n$ a μ_1 ? μ_2 .
 $z_i = (q_i - q_i)/s_q$, $z_i \in N(0,1)$

Test statistic:

$$T_{0} = \max_{1 \le a < n-1} \{ T_{a} \} = \max_{1 \le a < n-1} \{ a \overline{z}_{1}^{2} + (n-a) \overline{z}_{2}^{2} \}$$
where
$$\overline{z}_{1} = \frac{1}{a} \sum_{i=1}^{a} z_{i}, \overline{z}_{i}, \overline{z}_{1}^{2} = \frac{1}{(n-a)} \sum_{i=a+1}^{n} z_{i}, \overline{z}_{2}^{2} = \frac{1}{(n-a)} \sum_{i=a+1}^{n} z_{i}, \overline{z}_{2}^{2} = \frac{1}{2} \sum_{i=a+1}^{n} z_{$$

Homogeneity Tests

Alexandersson SNHT

Bivariate Test

Bivariate Test

Null and alternative hypothesis:

 H_0 : vectors $\{x_i, y_i\}$ bivariate normal distributed

 $N(\mu_x, \mu_y, \sigma_x^2, \sigma_y^2, \rho)$

 H_1 : pro $0 < i_0 < n$ a d ? 0 - 1

 $N(\mu_x, \mu_y, \sigma_x^2, \sigma_y^2, \rho)$ pro $i ? i_0$ $N(\mu_x, \mu_y + d, \sigma_x^2, \sigma_y^2, \rho)$ pro $i > i_0$.

Test statistic:

$$\mathsf{T}_0 = \max_{i < n} \left\{ \mathsf{T}_i \right\}$$

where:
$$X_i = \frac{1}{i} \sum_{j=1}^{i} x_j$$
, $Y_i = \frac{1}{i} \sum_{j=1}^{i} y_j$, $\overline{X} = X_n$, $\overline{Y} = Y_n$

$$S_{x} = \sum_{i=1}^{n} (x_{i} - \overline{X})^{2}$$
, $S_{y} = \sum_{i=1}^{n} (y_{i} - \overline{Y})^{2}$, $S_{xy} = \sum_{i=1}^{n} (x_{i} - \overline{X})(y_{i} - \overline{Y})$,

$$F_i = S_x - (X_i - \overline{X})^2 ni/(n-i)$$
 , $i < n$,

$$D_i = S_x(\overline{Y} - Y_i) - S_{xy}(\overline{X} - X_i)n/[(n-i)F_i],$$

$$T_i = [i(n-i)D_i^2 F_i]/(S_x S_y - S_{xy}^2)$$

Homogeneity Tests

Alexandersson SNHT

Bivariate Test

Vincent Technique

Easterling and Peterson

Test statistic: $U = \frac{(RSS_1 - RSS_2)}{3} \frac{RSS_2}{(n-4)}$? F(3,n-4)

t-test: differences of levels before and after a discontinuity

Homogeneity Tests Alexandersson SNHT Bivariate Test Technique

40 year parts of the series

(one inhomogeneity per 30-40 years)

Homogeneity assessment

Station Čáslav, 3rd segment, 1911-1950, n=40

Test	Ref	I	II	III	IV	V	VI	VII	VIII	IX	X	XI	XII	Win	Spr	Sum	Aut	Year
A	avg	1927	1929	1927	1927	1927	1928	1927	1926	1926	1926	1926	1926	1927	1927	1927	1926	1927
A			1930															
A	corr	1927	1927	1927	1927	1927	1928	1927	1926	1926	1926	1926	1926	1927	1927	1927	1926	1927
A				1939		1938	1939	1940	1922						1937	1937		1935
A	dist	1927	1928	1927	1927	1927	1928	1927	1926	1926	1926	1926	1926	1927	1927	1927	1926	1927
A			1930								1940							1918
В	avg	1927	1928	1927	1927	1927	1928	1927	1926	1926	1926	1926	1926	1927	1927	1927	1926	1927
В									1922									
В	corr	1927	1927	1927	1927	1927	1928	1927	1926	1926	1926	1926	1926	1927	1927	1927	1926	1927
В				1936		1938	1939	1944	1922					1935	1937	1937		1935
В									1937									
В	dist	1927	1928	1927	1927	1927	1928	1927	1926	1926	1926	1926	1926	1927	1927	1927	1926	1927
В		1930									1940			1931			1913	1918
V	corr													1927			1926	
V															1937	1922		1935
V																1937		
V	dist													1927	1927	1927		
V																		1918

- Quality control
- Homogenization
- Data Analysis

Homogeneity assessment

Begin	End	Length	InHomogen eity	Number	% detected inhom	% possible inhom	End	Missin g
1911	1950	40		140	100	120		
			1927	60	43	51		
			1926	37	26	32		
			1928	9	6	8		4
			1937	7	5	6		
			1922	4	3	3		
			1935	4	3	3		
			1918	3	2	3		
			1930	3 2		3		
			1939	3	2	3		
			1940	3	2	3		2
			1938	2	1	2		
			1913	1	1	1	3	3
			1929	1	1	1		
			1931	1	1	1		
			1936	1	1	1		
			1944	1	1	1		
1926	1927	2		97	69	83		
1926	1931	6		111	79	95		
1935	1940	6		20	14	17		
1911	1920	10		4	3	3		
1921	1930	10		114	81	97		
1931	1940	10		21	15	18		
1941	1950	10		1	1	1		

Homogeneity assessment

Station Čáslav, 3rd segment, 1911-1950, n=40

Begin	End	Length	InHomogen eity	Number	% detected inhom	% possible inhom	End	Missin g
1911	1950	40		140	100	120		
			1927	60	43	51		
			1926	37	26	32		
			1928	9	6	8		4
			1937	7	5	6		
			1922	4	3	3		
			1935	4	3	3		
			1918	3	2	3		
			1930	3	2	3		
			1939	3	2	3		
			1940	3	2	3		2
			1938	2	1	2		
			1913	1	1	1	3	3
			1929	1	1	1		
			1931	1	1	1		
			1936	1	1	1		
			1944	1	1	1		
1926	1927	2		97	69	83		
1926	1931	6		111	79	95		
1935	1940	6		20	14	17		
1911	1920	10		4	3	3		
1921	1930	10		114	81	97		
1931	1940	10		21	15	18		
1941	1950	10		1	1	1		

Adjusting the series

- differences: ± 20 values around inhomogeneity (each month)
- Reference series as an average of the best correlated stations

Filling missing values

- linear regression (±20 values)
- Reference series as an average of the best correlated stations

Further remarks

 for creating reference series - used stations outside the Czech Republic

(measuring in the beginnings of instrumental measurements)

Several steps – iterations of homogenization(3)

Homogenization of the series in the Czech Republic

Czech Republic

Number of available stations

Number of climatological stations

1976 1916-1920 1940-44 1942-44 1945-47 1948-1960 1961

Jahrbücher der k. k. Zentral-Anstalt für Meteorologie und Erdmagnetismus 1848-1915. Wien. Bericht der meteorologischen Commission des naturforschenden Vereines in Brünn 1881-1911. Brünn 1882-1917. Ročenka povětrnostních pozorování meteorologických stanic 1916-1960. Praha 1934-1966.

Number of homogenized stations

Number of homogenized stations	174
Average series length	59.1 years
Average minimum distance	13.3 km

Number of stations for a given year

Number of stations for a given length

Spatial distribution of the stations

Homogenization overview

Charakteristic	Data			
	Original	Adjusted		
Number of stations	192	174		
Number of stations - 40 year parts	348	307		
Number of adjustments		231		
Number of tested series	40716	35919		
Number of signif. inhomogeneities p=0.05	32445	13802		
Number of sign. inhomogenities per No. of series	79.7%	38.4%		

Number of tested series - original data

Tests	Months	Seasons +	Reference	Stations	Number
		Year	series	- parts	of tests
A	12	5	3	348	17748
В	12	5	3	348	17748
V		5	3	348	5220
Sum					40716

A = Alexandersson SNHT, B = Bivariate Test, V - Vincent method

Number of significant inhomogeneities before and after homogenization (p=0.05)

Amount of adjustments for homogenised series (absolute values) - median

Correlation coefficients between candidate and reference series before and after homogenization (median)

Summer vs. winter inhomogeneities

- changed measuring conditions (relocation, etc.) manifested mainly in summer
- role of active surface: in winter diminished (prevailing circular factors), in summer increased (radiative factors)

Homogenization - conclusions

 40% inhomogeneous series after homogenization (80%before)

 uncertainty in correct inhomogeneities detection (random component of the series; correct inhomogeneity detections for a step lower than 0.5 °C

in less than 50% of cases)

Without complete metadata

- how to increase confidence of the tests

- Monthly, seasonal, annual averages
- Various reference series
- Various statistical tests (40 year periods)
- Statistical processing of all the test results
- Several steps iterations

Transition to Automatic Measurements

- Introduced since 1997
- the replacement accomplished within short period (several years)
- only few station with comparative measurements (manual and automatic)

Transition to Automatic Measurements - Consequences

- too early for adjusting data (but inhomogeneities caused by the transition already detectable)
- after transition of all stations: no stations available for creating homogeneous reference series
- no way how to assess or adjust inhomogeneities!!!

Data Analysis

Box plot for correlation coefficients

Correlations between averaged series of the Czech Republic and averaged series of stations outside the Czech Republic, 1848-1999

Season	Win	Spr	Sum	Aut	Year
Corr.	0.97	0.93	0.94	0.93	0.96

Averaged series of the Czech Republic

An average from all available stations

- after converting series into anomalies 1961-1990

(so that series measuring in different periods are comparable)

An average from all available stations

- converting series into anomalies

An average from all available stations

- converting series into anomalies

An average from all available stations

- converting series into anomalies

Averaged series of the Czech Republic

smoothed by 10-year Gaussian low-pass filter.

Trend /100 years (°C) 1848-2000.

Month	I	II	\coprod	IV	V	VI	VII	VIII	IX	X	XI	XII
Trend	1.17	0.47	1.22	0.64	0.79	0.13	0.39	0.56	0.30	0.22	1.06	1.29
Season	Win	Spr	Sum	Aut	Year							
Trend	0.96	0.88	0.36	0.52	0.69							

Averaged series of the Czech Republic

Maximum Entropy Spectral Analysis

Period
7.8 y.
5.5 y.
2.3 y.

Maximum Entropy Spectral Analysis

AnClim software

- 1995-2003
- Continuous development
- Comprehensive tool
- For free use

http://www.sci.muni.cz/~pest

AnClim software

ProcData software

Thank you for your attention